Bibliography References Validation Using Emergent Architecture

. Parmentier and A. Belaid

CRIN/CNRS — INRIA Lorraine
Batiment LORIA — Campus scientifique BP 239
54506 Vandeceuvre-lés-Nancy CEDEX FRANCE

E-mail: {parmenti,abelaid}@loria.fr

Abstract

In this paper, we present an Al approach for the
semantic recognition of Bibliography references. The
objective is to produce for each reference (given by an
oCR flow), a structured data containing the list of the
different sub-fields recognized and semantically vali-
dated. The validation is operated according to a Bib-
liography reference database, by the eram of princi-
pal terms in each reference field. The system uses an
emergent architecture containing a Concept Network
butlt from the database. This net represents the prin-
cipal fields of the references and includes statistics on
the occurrence of theiwr terms. Validation s achieved
dynamically by activation at each time of the more
pertinent concepts. These concepts verify the presence
of their terms by the execution of appropriate agents.
This architecture is robust and non-deterministic al-
lowing to find a solution in spite of OCR errors.

Keywords: Bibliography References — Emer-
gent Architecture — Concept Network — Term Co-
occurrence.

1 Introduction

For many applications, it is necessary to analyze the
document content and to extract the structure rela-
tively to its finest components. This concerns the con-
tent architecture of text physical blocks such as foot-
notes, figure captions and Bibliography references. For
these blocks, physical structure (limited to a short line
sequence) is less informative than logical one which is
able to inform the system about components structure
and content. This information, which is fundamental
for recognition, deals with typographic style, term lin-
guistic affiliation, contextual information on successive
sub-fields such as limits and location. In this case, the
structure recognition becomes document understand-

ing. Several document image understanding systems
have been proposed for documents such as letter ad-
dresses [3], forms [2] where the logical structures is
more complete than layout structure.

In this paper, we present a system for the recog-
nition of Bibliography references. The logical struc-
ture is composed of a series of fields corresponding
to authors, title, conference mname, etc. Limits be-
tween these fields are not always easy to detect and
there is not a rigorous syntax to describe the field con-
tents. We chose to validate limits between fields and
their content by looking for the presence and the co-
occurrence of their principal terms according to statis-
tics calculated from a reference database. The liter-
ature mentions several algorithms to validate terms
linked together, such as decision trees, grammars or
discrete and stochastic relaxation. Due to the fact
that the validation problem is combinatory (NP com-
plete), all these approaches are time consuming. We
chose to use BASCET, a new architecture, inspired
from Hofstadter and Mitchell’s work [4], designed to
build any type of system that needs interaction be-
tween several knowledge sources, declarative and pro-
cedural, and that has to show an intelligent behavior,
versatile in 1ts decisions, aiming to approach the hu-
man cognitive faculties.

2 System Overview

The validation is done in three steps (¢f. figure 1).
The first step concerns the syntactical analysis of the
OCR flow in order to extract the reference fields. This
step, already operational (cf. [1]), is based on search
of field initials and finals from a reference grammar.

The second step deals with term extraction or fil-
tering in each field. According to each field, terms
correspond to names in AUTHOR field, keywords in TI-
TLE, specific words in CONFERENCE field, etc.

The last step is the validation of the reference fields,
using their term co-occurrences. The aim is to vali-
date the orthography of each term, verifying that these
terms already appeared in the base. The more they
appeared, the more they are validated. But their re-
lationships in the base are also important: the more
often two authors write together, the more probable
their names are to be correct if they both appear in
the same AUTHORS field.

Structure Syntactical @
Model F

Analysis iltering

Input
OCR flow

- - Concept
Semantic Analysi Network

Figure 1: System Overview

3 Concept Network

As shown in figure 2, the Concept Network is sep-
arated into two parts: the generic part which cor-
responds to the syntactical aspect of the model and
considered as a long term memory, and the specific
part which contains the domain information and can
be considered as a mean term memory.

3.1 Generic part

The generic part of the Concept Network represents
the system model of the domain (the references). Its
is a hierarchy of nodes corresponding to classes and
sub-classes. The root node represents the reference
concept, while the intermediate nodes represent dif-
ferent fields such as AUTHORS, TITLE and CONFER-
ENCE. Leaves correspond to elementary parts of dif-
ferent fields, such as NaAME and FIRST-NAME for the
field AUTHOR. There are two kinds of links between
nodes: composed-of and co-exists with. The later ex-
presses the fact that nodes belong to the same concep-
tual level in the hierarchy.

3.2 Specific part
The specific part, obtained by “compilation” of the

reference database, allows to point up the most rel-
evant terms in all the references. It corresponds to

\ AUTHORS H AUTHOR }é /
R
3 *{ Auteur2

— Composed of
Heesesd = Co-existswith
=<~ ~ = isa, hasinstance
== co-occurswith

REFERENCE

_ % Keywordl
!

KEYWORD &

Figure 2: Concept Network

nodes given by instantiation of leaves of the GENERIC
part, such as Author; for the sub-class Author. Links
between generic part and specific part are of type:
1s-a, while links within specific part are of type: co-
occurs. This link expresses the fact that the two terms
(nodes) appeared in the same reference.

3.3 Emergence Principle

The emergence principle is based on the activation
of nodes. A node emerges when it is activated. Each
node has an activation value depending on the influ-
ence of its neighbors, updated at each cycle. The cal-
culus of the influence is based on the neighbor proxim-
ity and activation. The proximity between nodes de-
pends on the type of their link and is often expressed
as a ratio between occurrence values. Here are the
formulae giving the proximities of generic nodes:

e composed-of. the proximity value is a constant
given by the designer,

o co-exists with: (ex: A coexists with B) :

NbA

C1+ (100 — Cl)iNbB < NBT

where NbA (respectively NbB, NbT) is the num-
ber of A’s (respectively B’s, T’s) instances in the
base, C1 is a constant set by the designer, and T
is a node composed of A and B.

The other types depend on the reference database.

4 Construction of the Specific Part

The system counts in the database, for each node
of the generic part, the number of its occurrences, the

number of its co-occurrences with the other nodes, and
deduces the proximities with nodes appearing in the
same reference.

We give in the following the formulae for the calcu-
lus of links used at this level

o is-a (ex: A is-a B):

NbA

where NbA is the number of A occurrences, Max-
OccB the maximum of occurrences of all the in-
stances of B, and C2 is a constant (given by the
designer), this is the same for the second formula.

o has-instance (ex: B has-instance A), this link
is the inverse of is-a:

NbA

o co-occurs with (ex: A co-occurs with B)

NbCoOc(A, B)

100 x NDA

where NbCoOc(A, B) is the number of co-

occurrences of A and B.

The proximities between the node AUTHOR and the
authors represent the number of occurrences of the
authors in the list. The proximities between the au-
thors represent the number of times they have been
co-authors in the list.

Let (C,B), (C,B), (A,B), (C) and (B) be the au-
thor’s list in five references. Figure 3 gives the oc-
currence number of each author (A: 1, B:4, C:3), the
number of their co-occurrences (AB:1, AC:0, BC:2),
and the proximity values which calculus detail is given
by the grey areas.

5 Architecture Functioning

The initialization of the system is the activation of
the Concept Network. This is done by creating an
object (thus, an instantiation of a node in the Con-
cept Network) in the Blackboard, activating the node
of whom it is an instantiation. Then, the agents of
the activated node(s) are posted in a queue (called
Coderack in the CoPYCAT architecture).

Next, N agents are extracted (probabilistically cho-
sen, depending on temperature — which measures how

Referenceslist: CB CB AB

ElE

70+30*3/4

AUTHOR

70+30* 1/4
.

77.

47.5% -
N 100%(100% *34 g2

100% 50%

A 1 B 2 C
25% 66%

1 4 3

Figure 3: Piece of the specific part of the Concept
Network

much problems are solved — and on agent urgency val-
ues) from the Coderack and executed. The number
N is a parameter of the system (Mitchell assigned it
to 15 in the CoPYCAT project). After that, Concept
Network 1s updated, that is to say its activation is
propagated between the nodes. Then, activated nodes
are allowed to launch agents.

This re-iterates until a stopping agent is executed
and actually stops the process.

The solution is build from the blackboard state, and
this state is optionally added to the references base,
in order to be later integrated in the particular part
of the Concept Network.

5.1 Agents

There are currently two types of agents: the first
one 18 the validating agent, which decides whether or
not there is a term in the Blackboard (instantiation
of the node AUTHOR (respectively KEYWORD)) cor-
responding to the author (respectively keyword) that
launched the agent. This decision is taken after a com-
parison using the edition distance. When 75% or more
of the term letters are the same (in the same place),
the term is recognized and its confidence score 1s saved.

Another type of agents is the stopping agent. Each
node of the particular part in the Concept Network
have such an agent. Its urgency value is lower than
the other agents, so that it has low probabilities of
execution as long as other agents are present in the
Coderack. Once executed, it examines the system idle-
ness (when an agent changes something in the Black-
board, the idleness 1s reset to zero, else the i1dleness
increases at every update of the network), and when
it is greater than the permitted idleness, it decides
probabilistically (depending on the system’s tempera-
ture) whether or not it is time to stop. It then shows

the recognized reference (with the confidence scores).

The beginning idleness is a parameter of the sys-
tem. If an action is done in the Blackboard (descrip-
tor change, object creation, ...), and the idleness is
near of the maximum permitted idleness (with a 20%
margin), this permitted idleness is increased of 20%.
This behavior allows the system to stop early, and it
still is likely to execute a last-action agent.

5.2 An example

The Concept Network (cf. figure 4) is obtained
from a reference database similar to the one shown
in figure 3, added with some keywords. At the begin-
ning, all the Concept Network is inactive.

REFERENCE

48 100
78 100 gy
1

00 50
[Akinddle % Bdaid}?‘ Chenevoy &=

Figure 4: Concept Network of the example

After introducing the text of reference containing
two authors, and a title with two keywords, the system
is the state shown by the figure 5. All the nodes which
were recognized are activated (100%), and the others
begin to emerge (in case of failure, all solutions have
to be tested). The process took 4 cycles to produce
its response: 1t found and recognized 2 authors, and 2
keywords (this is an optimal case because all the terms
were already in the base). 3 decomposition agents and
4 validating agents were executed, which took more
time than the 18 stopping agents that only checked
whether or not the system should stop. The response
was quasi-immediate (the Concept Network was small,
but tests with more nodes gave similar speed).

48 100
78
100

Akindele Belaid
76 25 100 | 66

KEYWORD
100

Figure 5: Final state of the Concept Network

6 Conclusion and Discussion

We have developed an architecture based on agent
cooperation. The principal information is represented
by a Concept Network which is a semantic net evolv-
ing dynamically during the system execution. The
evolution leads the system to propose, at each time,
the interesting concept to be analyzed and appropri-
ate agents to execute on this concept. To avoid de-
terminism of classical models, we use a temperature
measurement which controls the system decisions and
by consequence the system convergence. This archi-
tecture has been used on two applications: traveler
salesman problem and bibliographic reference valida-
tion. Although the system is in its beginning, it works
quickly and solutions are satisfactory: they correspond
to solutions given by human and speed is acceptable.
For the first problem, since each town is given with
distances from all the others, the solution 1s found in
only one cycle. But for references, the system is tested
only on the author concept. The activation values are
correctly propagated allowing to tune the system pa-
rameters. The architecture is completely implemented
(in C++) on a Sparc Station.

References

[1] A.Belaid, Y. Chenevoy, and J. C. Anighogu. Qual-
itative Analysis of Low-Level Logical Structures.
In EP’94, volume 6, pages 435-446, Darmstadt,
Germany, Apr. 1994.

[2] Y. Belaid, A. Belaid, and E. Turolla. Ttem search-
ing in forms : Application to french tax forms. In

ICDAR’95, Montréal, Aug. 1995.

[3] A. Dengel. Document Image Analysis -
Expectation-Driven Text Recognition. In Procced-
wngs of the Workshop on Syntactical and Struc-
tural Pattern Recognition, pages T78-87. Interna-
tional Association for Pattern Recognition, 1990.

[4] D. R. Hofstadter and M. Mitchell. The Copycat
Project: A Model of Mental Fluidity and Analogy-
Making. In J. Barnden and K. Holyoak, editors,
Advances in Connectionnist and Neural Compu-

tation Theory, volume 2, pages 31-113. Lawrence
Erlbaum Associates, 1992.

